首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   167篇
  免费   0篇
安全科学   1篇
环保管理   27篇
基础理论   122篇
污染及防治   6篇
评价与监测   2篇
灾害及防治   9篇
  2015年   1篇
  2014年   9篇
  2013年   12篇
  2012年   1篇
  2011年   6篇
  2010年   12篇
  2009年   13篇
  2008年   5篇
  2007年   13篇
  2006年   8篇
  2005年   14篇
  2004年   16篇
  2003年   6篇
  2002年   1篇
  2001年   7篇
  1999年   1篇
  1997年   4篇
  1996年   4篇
  1995年   6篇
  1993年   5篇
  1992年   1篇
  1991年   3篇
  1990年   3篇
  1989年   2篇
  1988年   4篇
  1987年   1篇
  1986年   1篇
  1983年   1篇
  1981年   2篇
  1980年   2篇
  1978年   1篇
  1977年   2篇
排序方式: 共有167条查询结果,搜索用时 46 毫秒
101.
Connectivity Planning to Address Climate Change   总被引:1,自引:0,他引:1  
As the climate changes, human land use may impede species from tracking areas with suitable climates. Maintaining connectivity between areas of different temperatures could allow organisms to move along temperature gradients and allow species to continue to occupy the same temperature space as the climate warms. We used a coarse‐filter approach to identify broad corridors for movement between areas where human influence is low while simultaneously routing the corridors along present‐day spatial gradients of temperature. We modified a cost–distance algorithm to model these corridors and tested the model with data on current land‐use and climate patterns in the Pacific Northwest of the United States. The resulting maps identified a network of patches and corridors across which species may move as climates change. The corridors are likely to be robust to uncertainty in the magnitude and direction of future climate change because they are derived from gradients and land‐use patterns. The assumptions we applied in our model simplified the stability of temperature gradients and species responses to climate change and land use, but the model is flexible enough to be tailored to specific regions by incorporating other climate variables or movement costs. When used at appropriate resolutions, our approach may be of value to local, regional, and continental conservation initiatives seeking to promote species movements in a changing climate. Planificación de Conectividad para Atender el Cambio Climático  相似文献   
102.
Abstract:  Security infrastructure along international boundaries threatens to degrade connectivity for wildlife. To explore potential effects of a fence under construction along the U.S.–Mexico border on wildlife, we assessed movement behavior of two species with different life histories whose regional persistence may depend on transboundary movements. We used radiotelemetry to assess how vegetation and landscape structure affect flight and natal dispersal behaviors of Ferruginous Pygmy-Owls ( Glaucidium brasilianum ), and satellite telemetry, gene-flow estimates, and least-cost path models to assess movement behavior and interpopulation connectivity of desert bighorn sheep ( Ovis canadensis mexicana ). Flight height of Pygmy-Owls averaged only 1.4 m (SE 0.1) above ground, and only 23% of flights exceeded 4 m. Juvenile Pygmy-Owls dispersed at slower speeds, changed direction more, and had lower colonization success in landscapes with larger vegetation openings or higher levels of disturbance ( p ≤ 0.047), which suggests large vegetation gaps coupled with tall fences may limit transboundary movements. Female bighorn sheep crossed valleys up to 4.9 km wide, and microsatellite analyses indicated relatively high levels of gene flow and migration (95% CI for FST= 0.010–0.115, Nm = 1.9–24.8, M = 10.4–15.4) between populations divided by an 11-km valley. Models of gene flow based on regional topography and movement barriers suggested that nine populations of bighorn sheep in northwestern Sonora are linked by dispersal with those in neighboring Arizona. Disruption of transboundary movement corridors by impermeable fencing would isolate some populations on the Arizona side. Connectivity for other species with similar movement abilities and spatial distributions may be affected by border development, yet mitigation strategies could address needs of wildlife and humans.  相似文献   
103.
Abstract:  To be relevant to societal interests and needs, conservation science must explicitly lend itself to solving real-world problems. Failure to evaluate under field conditions how a new technology or method performs or the cost of its implementation can prevent its acceptance by end users. Demonstration, defined here as the translation of scientific understanding into metrics of performance and cost of implementation under real-world conditions, is a logical step in the challenging progression from fundamental research to application. Demonstration reduces scientific uncertainty and validates the hypothesis that a management approach is both effective and financially sustainable. Much like adaptive management, demonstration enables researchers and resource managers to avoid trial-and-error approaches and instead conduct unbiased assessment of management interventions. The participation of end users and regulators in the development and execution of demonstration projects ensures that performance measures are credible and increases the probability that successful innovations will be adopted. Four actions might better connect science to the needs of resource managers via demonstration. First, we recommend that demonstration be conducted as a formal process that documents successes and failures. Second, demonstration should be budgeted as an integral component of government agencies' science programs and executed as a partnership between researchers and managers. Third, public and private funders should increase the opportunities and incentives for academics to engage in demonstration. Fourth, social influences on adoption of new technologies and methods should be further explored. When end users can evaluate explicitly whether a new approach is likely to achieve management objectives, save money, and reduce risk under uncertainty, the professional community successfully has bridged a chasm between research and application .  相似文献   
104.
Climate Change, Elevational Range Shifts, and Bird Extinctions   总被引:4,自引:0,他引:4  
Abstract:  Limitations imposed on species ranges by the climatic, ecological, and physiological effects of elevation are important determinants of extinction risk. We modeled the effects of elevational limits on the extinction risk of landbirds, 87% of all bird species. Elevational limitation of range size explained 97% of the variation in the probability of being in a World Conservation Union category of extinction risk. Our model that combined elevational ranges, four Millennium Assessment habitat-loss scenarios, and an intermediate estimate of surface warming of 2.8° C, projected a best guess of 400–550 landbird extinctions, and that approximately 2150 additional species would be at risk of extinction by 2100. For Western Hemisphere landbirds, intermediate extinction estimates based on climate-induced changes in actual distributions ranged from 1.3% (1.1° C warming) to 30.0% (6.4° C warming) of these species. Worldwide, every degree of warming projected a nonlinear increase in bird extinctions of about 100–500 species. Only 21% of the species predicted to become extinct in our scenarios are currently considered threatened with extinction. Different habitat-loss and surface-warming scenarios predicted substantially different futures for landbird species. To improve the precision of climate-induced extinction estimates, there is an urgent need for high-resolution measurements of shifts in the elevational ranges of species. Given the accelerating influence of climate change on species distributions and conservation, using elevational limits in a tested, standardized, and robust manner can improve conservation assessments of terrestrial species and will help identify species that are most vulnerable to global climate change. Our climate-induced extinction estimates are broadly similar to those of bird species at risk from other factors, but these estimates largely involve different sets of species.  相似文献   
105.
Abstract: The monitoring of trends in the status of species or habitats is routine in developed countries, where it is funded by the state or large nongovernmental organizations and often involves large numbers of skilled amateur volunteers. Far less monitoring of natural resources takes place in developing countries, where state agencies have small budgets, there are fewer skilled professionals or amateurs, and socioeconomic conditions prevent development of a culture of volunteerism. The resulting lack of knowledge about trends in species and habitats presents a serious challenge for detecting, understanding, and reversing declines in natural resource values. International environmental agreements require signatories undertake systematic monitoring of their natural resources, but no system exists to guide the development and expansion of monitoring schemes. To help develop such a protocol, we suggest a typology of monitoring categories, defined by their degree of local participation, ranging from no local involvement with monitoring undertaken by professional researchers to an entirely local effort with monitoring undertaken by local people. We assessed the strengths and weaknesses of each monitoring category and the potential of each to be sustainable in developed or developing countries. Locally based monitoring is particularly relevant in developing countries, where it can lead to rapid decisions to solve the key threats affecting natural resources, can empower local communities to better manage their resources, and can refine sustainable‐use strategies to improve local livelihoods. Nevertheless, we recognize that the accuracy and precision of the monitoring undertaken by local communities in different situations needs further study and field protocols need to be further developed to get the best from the unrealized potential of this approach. A challenge to conservation biologists is to identify and establish the monitoring system most relevant to a particular situation and to develop methods to integrate outputs from across the spectrum of monitoring schemes to produce wider indices of natural resources that capture the strengths of each.  相似文献   
106.
107.
Bushmeat markets exist in many countries in West and Central Africa, and data on species sold can be used to detect patterns of wildlife trade in a region. We surveyed 89 markets within the Cross–Sanaga rivers region, West Africa. In each market, we counted the number of carcasses of each taxon sold. During a 6‐month period (7594 market days), 44 mammal species were traded. Thirteen species were on the International Union for Conservation of Nature (IUCN) Red List or protected under national legislation, and at least 1 threatened species was traded in 88 of the 89 markets. We used these data to identify market groups that traded similar species assemblages. Using cluster analyses, we detected 8 market groups that were also geographically distinct. Market groups differed in the diversity of species, evenness of species, and dominant, prevalent, and characteristic species traded. We mapped the distribution of number of threatened species traded across the study region. Most threatened species were sold in markets nearest 2 national parks, Korup National Park in Cameroon and Cross River in Nigeria. To assess whether the threatened‐species trade hotspots coincided with the known ranges of these species, we mapped the overlap of all threatened species traded. Markets selling more threatened species overlapped with those regions that had higher numbers of these. Our study can provide wildlife managers in the region with better tools to discern zones within which to focus policing efforts and reduce threats to species that are threatened by the bushmeat trade. Mapeo de Sitios Críticos para Especies Amenazadas Comercializadas en Mercados de Vida Silvestre en la Región de los Ríos Cross‐Sanaga  相似文献   
108.
Public agencies sometimes seek outside guidance when capacity to achieve their mission is limited. Through a cooperative agreement and collaborations with the U.S. National Park Service (NPS), we developed recommendations for a conservation program for migratory species. Although NPS manages ~36 million hectares of land and water in 401 units, there is no centralized program to conserve wild animals reliant on NPS units that also migrate hundreds to thousands of kilometers beyond parks. Migrations are imperiled by habitat destruction, unsustainable harvest, climate change, and other impediments. A successful program to counter these challenges requires public support, national and international outreach, and flourishing migrant populations. We recommended two initial steps. First, in the short term, launch or build on a suite of projects for high‐profile migratory species that can serve as proof to demonstrate the centrality of NPS units to conservation at different scales. Second, over the longer term, build new capacity to conserve migratory species. Capacity building will entail increasing the limited knowledge among park staff about how and where species or populations migrate, conditions that enable migration, and identifying species’ needs and resolving them both within and beyond parks. Building capacity will also require ensuring that park superintendents and staff at all levels support conservation beyond statutory borders. Until additional diverse stakeholders and a broader American public realize what can be lost and do more to protect it and engage more with land management agencies to implement actions that facilitate conservation, long distance migrations are increasingly likely to become phenomena of the past. Optimismo y Retos para la Conservación Científicamente Basada de Especies Migratorias Dentro y Fuera de Parques Nacionales de E.U.A.  相似文献   
109.
Integration of conservation partnerships across geographic, biological, and administrative boundaries is increasingly relevant because drivers of change, such as climate shifts, transcend these boundaries. We explored successes and challenges of established conservation programs that span multiple watersheds and consider both social and ecological concerns. We asked representatives from a diverse set of 11 broad‐extent conservation partnerships in 29 countries 17 questions that pertained to launching and maintaining partnerships for broad‐extent conservation, specifying ultimate management objectives, and implementation and learning. Partnerships invested more funds in implementing conservation actions than any other aspect of conservation, and a program's context (geographic extent, United States vs. other countries, developed vs. developing nation) appeared to substantially affect program approach. Despite early successes of these organizations and benefits of broad‐extent conservation, specific challenges related to uncertainties in scaling up information and to coordination in the face of diverse partner governance structures, conflicting objectives, and vast uncertainties regarding future system dynamics hindered long‐term success, as demonstrated by the focal organizations. Engaging stakeholders, developing conservation measures, and implementing adaptive management were dominant challenges. To inform future research on broad‐extent conservation, we considered several challenges when we developed detailed questions, such as what qualities of broad‐extent partnerships ensure they complement, integrate, and strengthen, rather than replace, local conservation efforts and which adaptive management processes yield actionable conservation strategies that account explicitly for dynamics and uncertainties regarding multiscale governance, environmental conditions, and knowledge of the system? Éxitos y Retos de la Formación a la Implementación de Once Programas de Conservación de Amplio Alcance  相似文献   
110.
Biodiversity indices often combine data from different species when used in monitoring programs. Heuristic properties can suggest preferred indices, but we lack objective ways to discriminate between indices with similar heuristics. Biodiversity indices can be evaluated by determining how well they reflect management objectives that a monitoring program aims to support. For example, the Convention on Biological Diversity requires reporting about extinction rates, so simple indices that reflect extinction risk would be valuable. We developed 3 biodiversity indices that are based on simple models of population viability that relate extinction risk to abundance. We based the first index on the geometric mean abundance of species and the second on a more general power mean. In a third index, we integrated the geometric mean abundance and trend. These indices require the same data as previous indices, but they also relate directly to extinction risk. Field data for butterflies and woodland plants and experimental studies of protozoan communities show that the indices correlate with local extinction rates. Applying the index based on the geometric mean to global data on changes in avian abundance suggested that the average extinction probability of birds has increased approximately 1% from 1970 to 2009. Conectando Índices para el Monitoreo de la Biodiversidad con la Teoría de Riesgo de Extinción  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号